martes, 1 de junio de 2010
lunes, 31 de mayo de 2010
LEY DE OHM
George Simon Ohm, descubrió en 1827 que la corriente en un circuito de corriente continua varía directamente proporcional con la diferencia de potencial, e inversamente proporcional con la resistencia del circuito. La ley de Ohm, establece que la corriente eléctrica (I) en un conductor o circuito, es igual a la diferencia de potencial (V) sobre el conductor (o circuito), dividido por la resistencia (R) que opone al paso, él mismo. La ley de Ohm se aplica a la totalidad de un circuito o a una parte o conductor del mismo.
I = V / R ;
V = I x R
En los circuitos de corriente continua, puede resolverse la relación entre la corriente, voltaje, resistencia y potencia con la ayuda de un gráfico de sectores, este diagrama ha sido uno de los más socorridos:
Fig. 01
En este grafico puede apreciarse que hay cuatro cuadrantes que representan: V Voltaje, I Corriente, R Resistencia y W Potencia. De modo que, conociendo la cantidad de dos cualesquiera, nos permite encontrar el otro valor. Por ejemplo, si se tiene una resistencia de 1k y en sus extremos se mide una tensión de 10 Voltios, entonces la corriente que fluye a través de la resistencia será V/R = 0'01A o 10mA.
De forma similar, la potencia absorbida por esta resistencia será el cociente de V2 / R = 0'1W o 100mW, otra forma de hallar la potencia es con el producto de V x I o sea, 10V x 0'01 = 0'1W, con esto se confirma lo dicho.
Polaridad de una tensión
Dependiendo del flujo de la corriente en un circuito, una tensión tendrá una polaridad. Se establece que, el polo positivo en un circuito es el que corresponde al punto del que fluye la corriente del generador. La dirección de la corriente se indica con una flecha, como se muestra a continuación:
Fig. 02
Así, el lado de la resistencia dónde los flujos entran en la resistencia será el polo positivo del voltaje, el polo negativo es donde los flujos salen hacia fuera. Si la resistencia es de 5 W y la corriente es de 2 amperios, entonces el voltaje o la diferencia de potencial sería 10 voltios.
En electrónica, es normal hablar sobre la diferencia de potencial (d.d.p.) con referencia a un punto que normalmente es cero. Si este punto no fuera cero, entonces su valor se indicaría claramente, pero por conveniencia, la mayoría de los sistemas tienen una tierra común o masa que normalmente son ceros voltios.
Los circuitos serie
La corriente en un circuito serie es absolutamente la misma en todos sus puntos. Esto es fácil deducirlo al aplicar el principio de que la resistencia total de un circuito es la suma de todas y cada una de las resistencias que lo forman, dicho de otra forma, en el circuito que se muestra a continuación la corriente que lo atraviesa es de 2 mA, para su comprobación partimos de sumar las tres resistencias que lo forman, 2kW + 4kW + 6kW =12kW si la tensión que aplicamos es de 24V, al aplicar la formula, encontramos que la intensidad es de 0'002 A o sea, 2mA. Para el cálculo de la resistencia total en un circuito serie se utiliza esta formula general: RT= R1 + R2 + R3 ... .
Fig. 03
En este caso no hemos considerado la resistencia interna Ri de la fuente de corriente por ser muy pequeña, así como el decremento de la resistencia en las resistencias con el calor provocado por el paso de la corriente, sin embargo si esta Ri por cualquier circunstancia fuera más considerable, esto podría manifestarse con un bajo rendimiento del circuito. Veremos un caso concreto.
En el caso de una batería la cual presenta 12V al medir sus terminales y en cambio al conectar al circuito la carga de una lámpara de coche (12V 100mA), no funciona y sin embargo no está fundida, al medir la corriente de consumo observamos que es de tan sólo 0'05 A. Qué está ocurriendo. Un técnico sospecharía de la carga de la batería y estando la lámpara conectada pasaría a medir la tensión de la batería, obteniendo una lectura de 6V con un consumo de 0'05A.
Dado que la lámpara no se enciende su filamento no se calienta y consecuentemente su resistencia no varía (caso ideal), en estas condiciones el cociente de la tensión de 6V por la corriente de 0'05A nos indica que la resistencia de la lámpara es de 120W, lo esperado.
Otro ejemplo de ayuda con los cálculos. Dos lámparas que indican, 220V - 60W y 220V - 40W respectivamente se encuentran conectadas en serie a una línea de 220V. Qué potencia se transforma en cada lámpara.
I = V / R ;
V = I x R
En los circuitos de corriente continua, puede resolverse la relación entre la corriente, voltaje, resistencia y potencia con la ayuda de un gráfico de sectores, este diagrama ha sido uno de los más socorridos:
Fig. 01
En este grafico puede apreciarse que hay cuatro cuadrantes que representan: V Voltaje, I Corriente, R Resistencia y W Potencia. De modo que, conociendo la cantidad de dos cualesquiera, nos permite encontrar el otro valor. Por ejemplo, si se tiene una resistencia de 1k y en sus extremos se mide una tensión de 10 Voltios, entonces la corriente que fluye a través de la resistencia será V/R = 0'01A o 10mA.
De forma similar, la potencia absorbida por esta resistencia será el cociente de V2 / R = 0'1W o 100mW, otra forma de hallar la potencia es con el producto de V x I o sea, 10V x 0'01 = 0'1W, con esto se confirma lo dicho.
Polaridad de una tensión
Dependiendo del flujo de la corriente en un circuito, una tensión tendrá una polaridad. Se establece que, el polo positivo en un circuito es el que corresponde al punto del que fluye la corriente del generador. La dirección de la corriente se indica con una flecha, como se muestra a continuación:
Fig. 02
Así, el lado de la resistencia dónde los flujos entran en la resistencia será el polo positivo del voltaje, el polo negativo es donde los flujos salen hacia fuera. Si la resistencia es de 5 W y la corriente es de 2 amperios, entonces el voltaje o la diferencia de potencial sería 10 voltios.
En electrónica, es normal hablar sobre la diferencia de potencial (d.d.p.) con referencia a un punto que normalmente es cero. Si este punto no fuera cero, entonces su valor se indicaría claramente, pero por conveniencia, la mayoría de los sistemas tienen una tierra común o masa que normalmente son ceros voltios.
Los circuitos serie
La corriente en un circuito serie es absolutamente la misma en todos sus puntos. Esto es fácil deducirlo al aplicar el principio de que la resistencia total de un circuito es la suma de todas y cada una de las resistencias que lo forman, dicho de otra forma, en el circuito que se muestra a continuación la corriente que lo atraviesa es de 2 mA, para su comprobación partimos de sumar las tres resistencias que lo forman, 2kW + 4kW + 6kW =12kW si la tensión que aplicamos es de 24V, al aplicar la formula, encontramos que la intensidad es de 0'002 A o sea, 2mA. Para el cálculo de la resistencia total en un circuito serie se utiliza esta formula general: RT= R1 + R2 + R3 ... .
Fig. 03
En este caso no hemos considerado la resistencia interna Ri de la fuente de corriente por ser muy pequeña, así como el decremento de la resistencia en las resistencias con el calor provocado por el paso de la corriente, sin embargo si esta Ri por cualquier circunstancia fuera más considerable, esto podría manifestarse con un bajo rendimiento del circuito. Veremos un caso concreto.
En el caso de una batería la cual presenta 12V al medir sus terminales y en cambio al conectar al circuito la carga de una lámpara de coche (12V 100mA), no funciona y sin embargo no está fundida, al medir la corriente de consumo observamos que es de tan sólo 0'05 A. Qué está ocurriendo. Un técnico sospecharía de la carga de la batería y estando la lámpara conectada pasaría a medir la tensión de la batería, obteniendo una lectura de 6V con un consumo de 0'05A.
Dado que la lámpara no se enciende su filamento no se calienta y consecuentemente su resistencia no varía (caso ideal), en estas condiciones el cociente de la tensión de 6V por la corriente de 0'05A nos indica que la resistencia de la lámpara es de 120W, lo esperado.
Otro ejemplo de ayuda con los cálculos. Dos lámparas que indican, 220V - 60W y 220V - 40W respectivamente se encuentran conectadas en serie a una línea de 220V. Qué potencia se transforma en cada lámpara.
LEY de Kirchhoff
Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Robert Kirchhoff en 1845, cuando aún era estudiante. Estas son:
la Ley de los nodos o ley de corrientes.
la Ley de las "mallas" o ley de tensiones.
Son muy utilizadas en ingeniería eléctrica para obtener los valores de intensidad de corriente y potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.
En circuitos complejos, así como en aproximaciones de circuitos dinámicos, se pueden aplicar utilizando un algoritmo sistemático, sencillamente programable en sistemas de cálculo informatizado mediante matrices de un solo núcleo.
la Ley de los nodos o ley de corrientes.
la Ley de las "mallas" o ley de tensiones.
Son muy utilizadas en ingeniería eléctrica para obtener los valores de intensidad de corriente y potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.
En circuitos complejos, así como en aproximaciones de circuitos dinámicos, se pueden aplicar utilizando un algoritmo sistemático, sencillamente programable en sistemas de cálculo informatizado mediante matrices de un solo núcleo.
TEORIA DE LA RELATIVIDAD
La teoría de la relatividad incluye dos teorías (la de la relatividad especial y la de la relatividad general) formuladas por Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo.
La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
No fue sino hasta el 7 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias. El manuscrito tiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, había sido ofrecido por Einstein a la Universidad hebraica de Jerusalén en 1925, con motivo de su inauguración en Palestina, entonces bajo mandato británico. [1] [2] [3]
La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
No fue sino hasta el 7 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias. El manuscrito tiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, había sido ofrecido por Einstein a la Universidad hebraica de Jerusalén en 1925, con motivo de su inauguración en Palestina, entonces bajo mandato británico. [1] [2] [3]
CIRCUITOS ELECTRICOS
Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas. En la figura podemos ver un circuito eléctrico, sencillo pero completo, al tener las partes fundamentales:
Una fuente de energía eléctrica, en este caso la pila o batería.
Una aplicación, en este caso una lámpara incandescente.
Unos elementos de control o de maniobra, el interruptor.
Un instrumento de medida, el Amperímetro, que mide la intensidad de corriente.
El cableado y conexiones que completan el circuito.
Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.
Una fuente de energía eléctrica, en este caso la pila o batería.
Una aplicación, en este caso una lámpara incandescente.
Unos elementos de control o de maniobra, el interruptor.
Un instrumento de medida, el Amperímetro, que mide la intensidad de corriente.
El cableado y conexiones que completan el circuito.
Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.
Clasificación
Circuito abierto.
Circuito cerrado.
Los circuitos eléctricos se clasifican de la siguiente forma:
Por el tipo de señal:
De corriente continua
De corriente alterna
Mixtos
Por el tipo de régimen:
Periódico
Transitorio
Permanente
Por el tipo de componentes:
Eléctricos: Resistivos, inductivos, capacitivos y mixtos
Electrónicos: digitales, analógicos y mixtos
Por su configuración:
Serie
Paralelo
Mixto
Circuito abierto.
Circuito cerrado.
Los circuitos eléctricos se clasifican de la siguiente forma:
Por el tipo de señal:
De corriente continua
De corriente alterna
Mixtos
Por el tipo de régimen:
Periódico
Transitorio
Permanente
Por el tipo de componentes:
Eléctricos: Resistivos, inductivos, capacitivos y mixtos
Electrónicos: digitales, analógicos y mixtos
Por su configuración:
Serie
Paralelo
Mixto
OPTICA
La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones. Abarca el estudio de la reflexión, la refracción, las interferencias, la difracción, la formación de imágenes y la interacción de la luz con la materia. Estudia la luz, es decir como se comporta la luz ante la materia.
Reflexión y refracción
Artículo principal: Óptica geométrica
En la Edad Antigua se conocía la propagación rectilínea de la luz y la reflexión y refracción. Dos filósofos y matemáticos griegos escribieron tratados sobre óptica: Empédocles y Euclides.
Ya en la Edad Moderna René Descartes consideraba la luz como una onda de presión transmitida a través de un medio elástico perfecto (el éter) que llenaba el espacio. Atribuyó los diferentes colores a movimientos rotatorios de diferentes velocidades de las partículas en el medio.
La ley de la refracción fue descubierta experimentalmente en 1621 por Willebrord Snell. En 1657 Pierre de Fermat anunció el principio del tiempo mínimo y a partir de él dedujo la ley de la refracción.
Véase también: Ley de Snell
En la Refraccion el rayo de luz que se atraviesa de un medio transparente a otro, se denomina rayo incidente ; el rayo de luz que se desvía al ingresar al segundo medio transpartente se denomina rayo refractado ; el ángulo en que el rayo incidente, al ingresar al segundo medio, forma con la perpendicular al mismo, se denomina ángulo de incidencia; el ángulo que el rayo incidente forma con el rayo refractado, al desviarse, se denomina ángulo de refraccion
Interferencia y difracción [editar]
Artículo principal: Difracción
Interferencia (esquema simulado).
Robert Boyle y Robert Hooke y a dicha teoria la propuso Isaac Newton, los demas descubrieron, de forma independiente, el fenómeno de la interferencia conocido como anillos de Newton. Hooke también observó la presencia de luz en la sombra geométrica, debido a la difracción, fenómeno que ya había sido descubierto por Francesco Maria Grimaldi. Hooke pensaba que la luz consistía en vibraciones propagadas instantáneamente a gran velocidad y creía que en un medio homogéneo cada vibración generaba una esfera que crece de forma regular. Con estas ideas, Hooke intentó explicar el fenómeno de la refracción e interpretar los colores. Sin embargo, los estudios que aclararon las propiedades de los colores fueron desarrollados por Newton que descubrió en 1666 que la luz blanca puede dividirse en sus colores componentes mediante un prisma y encontró que cada color puro se caracteriza por una refractabilidad específica. Las dificultades que la teoría ondulatoria se encontraba para explicar la propagación rectilínea de la luz y la polarización (descubierta por Huygens) llevaron a Newton a inclinarse por la teoría corpuscular, que supone que la luz se propaga desde los cuerpos luminosos en forma de partículas.
Dispersión de la luz en dos prismas de distinto material.
En la época en que Newton publicó su teoría del color, no se conocía si la luz se propagaba instantáneamente o no. El descubrimiento de la velocidad finita de la luz lo realizó en 1675 Olaf Roemer a partir de observaciones de los eclipses de Júpiter.
CÁMARA OSCURA:
Este es el fundamento de la cámara fotográfica. Si en una caja cerrada hacemos un orificio pequeño y colocamos un cuerpo luminoso por delante dentro de la caja aparecerá la imagendel mismo invertida. Teniendo en cuenta la propagación rectilínea de la luz y siendo el orificio pequeño los rayos que llegan a este son oblicuos entonces como la luz no dobla sigue su recorrido rectilíneo formando una imagen invertida como se ve en la figura.
REFLEXIÓN
REFLEXIÓN
Este es uno de los fenómenos ópticos más sencillos. Si nosotros encendiéramos una linterna apuntándole a una SUPERFICIE PULIDA (espejo) veríamos como el haz de luz producido por la linterna rebota y vuelve dirigiéndose por ejemplo hacia una pared.
Entonces tomando una recta de referencia normal (N) perpendicular al espejo tenemos un rayo incidente (el proveniente de la linterna) y un rayo reflejado (el proveniente del espejo). Sobre este fenómeno rigen dos leyes:
1° Tanto el rayo incidente como el rayo reflejado y la recta N pertenecen al mismo plano.
2° El ángulo de incidencia es igual al ángulo de reflexión (). De este modo se deduce fácilmente que si el rayo incidente coincide con la recta N este rebota sobre sí mismo, ya que ambos ángulos tienen 0°.
Entonces tomando una recta de referencia normal (N) perpendicular al espejo tenemos un rayo incidente (el proveniente de la linterna) y un rayo reflejado (el proveniente del espejo). Sobre este fenómeno rigen dos leyes:
1° Tanto el rayo incidente como el rayo reflejado y la recta N pertenecen al mismo plano.
2° El ángulo de incidencia es igual al ángulo de reflexión (). De este modo se deduce fácilmente que si el rayo incidente coincide con la recta N este rebota sobre sí mismo, ya que ambos ángulos tienen 0°.
ESPEJOS PLANOS
De todos los rayos que parten de A tomaremos en cuenta al rayo AB, perpendicular al espejo y reflejado sobre sí mismo (según lo explicado anteriormente) y al rayo AC que forma con la normal CN un ángulo de incidencia i que reflejado (CD) forma un ángulo de reflexión r. Si prolongamos los segmentos AC y CD veremos como estos dos se cortan en un punto A’ llamado imagen de A. De este modo un observador parado en J afirmaría que los todos rayos parecen porvenir de A’.
Por lo tanto todos los rayos que parten de un punto objeto y se reflejan determinan otros, que prolongados determinan la llamada imagen virtual del punto en cuestión.
Cabe destacar que el punto A es simétrico con respecto a A’ debido a que el espejo EE’ es mediatriz del segmento AA’, de esta manera si hay un incremento el segmento AB también lo habrá en el segmento A’B. Esta es la explicación de por qué cuando nos acercamos a un espejo la imagen del espejo parece también acercarse hacia nosotros.
Imágenes de un cuerpo no puntual:
Teniendo en cuenta las consideraciones anteriores de las mediatrices se puede construir la imagen virtual de AB trazando las perpendiculares AM y BM al espejo, prolongando sus medidas y uniendo los puntos determinados en el paso anterior obteniendo la imagen virtual A’B’.
Un observador que desconoce principios de óptica al que imaginaremos transparente en el punto T que mira según el sentido de la flecha (hacia el espejo) estaría en condiciones de afirmar que el punto A que en realidad es A’ se encuentra situado bajo si derecha pero él mismo si girara 180° comprobaría que en realidad el punto A se encuentra de su lado izquierdo. Esta es la razón por la cual si miramos por un espejo vemos las cosas invertidas como muestra el esquema.
Por lo tanto todos los rayos que parten de un punto objeto y se reflejan determinan otros, que prolongados determinan la llamada imagen virtual del punto en cuestión.
Cabe destacar que el punto A es simétrico con respecto a A’ debido a que el espejo EE’ es mediatriz del segmento AA’, de esta manera si hay un incremento el segmento AB también lo habrá en el segmento A’B. Esta es la explicación de por qué cuando nos acercamos a un espejo la imagen del espejo parece también acercarse hacia nosotros.
Imágenes de un cuerpo no puntual:
Teniendo en cuenta las consideraciones anteriores de las mediatrices se puede construir la imagen virtual de AB trazando las perpendiculares AM y BM al espejo, prolongando sus medidas y uniendo los puntos determinados en el paso anterior obteniendo la imagen virtual A’B’.
Un observador que desconoce principios de óptica al que imaginaremos transparente en el punto T que mira según el sentido de la flecha (hacia el espejo) estaría en condiciones de afirmar que el punto A que en realidad es A’ se encuentra situado bajo si derecha pero él mismo si girara 180° comprobaría que en realidad el punto A se encuentra de su lado izquierdo. Esta es la razón por la cual si miramos por un espejo vemos las cosas invertidas como muestra el esquema.
CAMPO DE UN ESPEJO
Es la región del espacio visible desde un punto dado gracias a un espejo. El mismo queda determinado por los rayos reflejados provenientes de los dirigidos a la periferia del espejo.
ESPEJOS EN ÁNGULO.
Si tenemos dos espejos cuyas superficies pulidas se encuentran hacia fuera bien podríamos decir que se encuentran a 360°. Si colocamos un cuerpo entre medio de ellas no se formaría ninguna imagen. Del mismo modo si estuviesen a 180° (siguiendo una línea recta) y colocase un cuerpo como marca la figura se formaría una sola imagen y si estuviesen a 90° se formarían tres uno compartido y otros dos uno en cada uno de los espejos.
Entonces para averiguar la cantidad de imágenes n que se forman en dos espejos en ángulo a es válida la expresión:
De este modo vemos también que mientras más chico sea el ángulo serán más las imágenes formadas por lo que se podría decir que si a es un número muy chico la cantidad de imágenes sería un número cercano al infinito, razón por la cual en espejos paralelos se forman infinitas imágenes que se pierden intensidad y no llegan a distinguirse bien.
ESPEJOS EN ÁNGULO.
Si tenemos dos espejos cuyas superficies pulidas se encuentran hacia fuera bien podríamos decir que se encuentran a 360°. Si colocamos un cuerpo entre medio de ellas no se formaría ninguna imagen. Del mismo modo si estuviesen a 180° (siguiendo una línea recta) y colocase un cuerpo como marca la figura se formaría una sola imagen y si estuviesen a 90° se formarían tres uno compartido y otros dos uno en cada uno de los espejos.
Entonces para averiguar la cantidad de imágenes n que se forman en dos espejos en ángulo a es válida la expresión:
De este modo vemos también que mientras más chico sea el ángulo serán más las imágenes formadas por lo que se podría decir que si a es un número muy chico la cantidad de imágenes sería un número cercano al infinito, razón por la cual en espejos paralelos se forman infinitas imágenes que se pierden intensidad y no llegan a distinguirse bien.
ESPEJOS ESFÉRICOS:
Algunas definiciones
Espejo curvo es el que tiene la superficie curva pulida.
Espejo esférico es el que tiene la superficie pulida semejante a la de un casquete esférico.
Espejo esférico cóncavo es el que tiene la superficie interior pulida.
Espejo esférico convexo es el que tiene la superficie exterior pulida.
ESPEJOS CONCAVOS
Elementos de un espejo esférico:
Radio de curvatura: es el radio de la esfera a la cual pertenece.
Vértice del espejo: es el polo del casquete.
Eje principal: es la recta determinada por el vértice y el centro de la curvatura.
Eje secundario: es cualquier recta que pasa por el centro de la curvatura
Abertura del espejo: es el ángulo determinado por los dos ejes secundarios que pasan por el borde del espejo o suele también determinarse entre un eje secundario que pasa por el borde y el principal.
Marcha de los rayos
Espejo curvo es el que tiene la superficie curva pulida.
Espejo esférico es el que tiene la superficie pulida semejante a la de un casquete esférico.
Espejo esférico cóncavo es el que tiene la superficie interior pulida.
Espejo esférico convexo es el que tiene la superficie exterior pulida.
ESPEJOS CONCAVOS
Elementos de un espejo esférico:
Radio de curvatura: es el radio de la esfera a la cual pertenece.
Vértice del espejo: es el polo del casquete.
Eje principal: es la recta determinada por el vértice y el centro de la curvatura.
Eje secundario: es cualquier recta que pasa por el centro de la curvatura
Abertura del espejo: es el ángulo determinado por los dos ejes secundarios que pasan por el borde del espejo o suele también determinarse entre un eje secundario que pasa por el borde y el principal.
Marcha de los rayos
TERMODINAMOCA
La termodinamica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.
El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.
Al hablar de termodinamica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.
Previo a profundizar en este tema de la termodinamica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.
La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.
La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.
Primera Ley de la Termodinamica
Esta ley se expresa como:
Eint = Q - W
Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)
Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.
Segunda Ley de la Termodinamica
La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.
En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinamica, que tiene dos enunciados equivalentes:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.
El calor se define como una transferencia de energía debida a una diferencia de temperatura, mientras que el trabajo es una transferencia de energía que no se debe a una diferencia de temperatura.
Al hablar de termodinamica, con frecuencia se usa el término "sistema". Por sistema se entiende un objeto o conjunto de objetos que deseamos considerar. El resto, lo demás en el Universo, que no pertenece al sistema, se conoce como su "ambiente". Se consideran varios tipos de sistemas. En un sistema cerrado no entra ni sale masa, contrariamente a los sistemas abiertos donde sí puede entrar o salir masa. Un sistema cerrado es aislado si no pasa energía en cualquiera de sus formas por sus fronteras.
Previo a profundizar en este tema de la termodinamica, es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna. Como ejemplo ilustrativo, es conveniente recurrir a la teoría cinética de los gases, en que éstos sabemos están constituidos por numerosísimas moléculas en permanente choque entre sí.
La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.
La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.
Primera Ley de la Termodinamica
Esta ley se expresa como:
Eint = Q - W
Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)
Notar que el signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.
Segunda Ley de la Termodinamica
La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.
En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinamica, que tiene dos enunciados equivalentes:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo
Suscribirse a:
Entradas (Atom)